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SAR Image

Single Look Complex (SLC) is characterized by a complex signal z = a · e jθ

• Amplitude (a): intensity of the backscattering

• Phase (θ): geometric information, random information θ = θrandom + θgeometric

Sentinel-1 SAR image - glacier
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Interferometry SAR

2 coregistered SLC images of the same scene at different times → interferogram :

γe jθ(i , j) =

∑
i,j∈Ω z1(i , j)z∗2 (i , j)√∑

i,j∈Ω z1(i , j)z∗1 (i , j)
∑

i,j∈Ω z2(i , j)z∗2 (i , j)

where:
• γ is coherence (∈ [0, 1]), representing the similarity between the two images
• θ represents the phase difference (θ = θ1 − θ2, θ ∈ [−π, π])

(a) phase (b) coherence
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Multi-temporal InSAR

2-Pass interferometry

• Unsatisfactory results

• Measurement accuracy (centimetric)

Multi-temporal interferometry

• Continuous monitoring of Earth deformations

• Improvement in measurement accuracy (millimetric)

• Building interferometric networks from a time series of SAR
images
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Data model

Spatial

S
p
a
ti
a
l

Te
m
po
ra
l

Representation of SAR time series using a sliding
window of n pixels x̃ i [3]

Consider a multivariate random vector
x̃ = [x̃1, . . . , x̃p]

T , ∀ (l , k) ∈ [0, p − 1]2{
x̃i
}n
i=1

∀i ∈ [1, n], a set i.i.d −→ x̃ ∼ CN (0, Σ̃)

The log-likelihood is

L(x̃; Σ̃) = − log

(
n∏

i=1

f (x̃i , Σ̃)

)
∝ n log(|Σ̃|) + nTr(Σ̃

−1
S)

where S = 1
n

∑n
i=1 x̃

i x̃iH

Covariance matrix : E[x̃ x̃H ] ≜ Σ̃ = Ψ̃⊙ w̃θw̃
H
θ

[3] P. Vu, A. Breloy, F. Brigui, Y. Yan, and G. Ginolhac, ”A new phase linking algorithm for multi-temporal INSAR based on the maximum likelihood estimator” IGARSS International
Geoscience and Remote Sensing Symposium, IEEE, 2022
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Classic PL

Principle:
Estimate p − 1 phase differences from p SAR images −→ w̃θ

Assuming that Ψ̃ is known, the method is equivalent to optimizing the following problem [2]:

minimize
w̃θ

w̃H
θ (Ψ̃

−1
◦ S)w̃θ

subject to θ1 = 0

PROBLEM !!!
In reality, Ψ̃ is unknown

- [2] proposed to use a plug-in: Ψ̃mod = |S| −→ not optimal

- [3] proposed to estimate Ψ̃ jointly with w̃θ

[2] Guarnieri, Andrea Monti, and Stefano Tebaldini. ”On the exploitation of target statistics for SAR interferometry applications.” IEEE Transactions on Geoscience and Remote Sensing 46.11
(2008): 3436-3443.

[3] P. Vu, A. Breloy, F. Brigui, Y. Yan, and G. Ginolhac, ”A new phase linking algorithm for multi-temporal INSAR based on the maximum likelihood estimator” IGARSS International
Geoscience and Remote Sensing Symposium, IEEE, 2022
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Phase Linking based on Maximum Likelihood Estimation (MLE-PL)

→ The optimization problem [3]:

minimize
Ψ̃,w̃θ

LG(x̃
i ; Σ̃(Ψ̃, w̃θ))

= n log(|Σ̃|) +
∑n

i=1 x̃
iHΣ̃

−1
x̃i

subject to θ1 = 0
w̃θ ∈ Tp

Ψ̃ real symmetric

with Tp = {w̃ ∈ Cp||[w̃ ]i | = 1,∀i ∈ [1, p]}

2 unknowns to estimate −→ Block Coordinate Descent Algorithm (BCD)

[3] P. Vu, A. Breloy, F. Brigui, Y. Yan, and G. Ginolhac. ”A new phase linking algorithm for multi-temporal INSAR based on the maximum likelihood estimator.” IGARSS International
Geoscience and Remote Sensing Symposium. IEEE, 2022.
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A new image arrives

t0
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tp

tp+1
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axis

Temporal axis

t0 t1 tp

tp+1

Covariance matrix phases vector

∀i = 1, . . . , n

x̃i =


x i
1

x i
2

...
x i
p


(p,1)

→ x̃i =


x i
1

x i
2

...
x i
p

xip+1


(p+1,1)

At each new SAR acquisition,

- Re-Estimation of the increasing covariance matrix

- Re-Estimation of the phases

−→ Huge computation time

Problem : Development of a new and sequential multi-temporal interferometry SAR approach for estimating
SAR phase time series using statistical tools.
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Data model

Representation of SAR time series with a sliding
window containing n pixels x̃i

We consider a set {x̃i}ni=1 where

x̃i = [x i
1, . . . , x

i
p︸ ︷︷ ︸

xi

, x i
l ]

T ∈ Cl=p+1

{
x̃i
}n
i=1

∀i ∈ [1, n], a set i.i.d −→ x̃ ∼ CN (0, Σ̃)

The covariance matrix can be rewritten as

Σ̃ =

 Σ w∗
θl
diag(wθ)γ

T

γdiag(wθ)
Hwθl γl


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Maximum Likelihood Estimation (MLE) problem

minimize
Ψ̃,w̃θ

LG(x̃
i ; Σ̃(Ψ̃, w̃θ))

subject to θ1 = 0, w̃θ ∈ Tp, Ψ̃ real symmetric

wθl is estimated with :

- estimated past

* ŵθ

* Σ̂

- new data

statistics of the

conditional distribution

of new image with

respect to the past

minimize
γ,γl ,wθl

LG(x̃
i ;γ, γl ,wθl )

subject to γ, γl real, |wθl | = 1, θ1 = 0

LG(x̃
i ;γ, γl ,wθl ) = −

n∑
i=1

LG
i (x i

l |xi ;γ, γl ,wθl ) + LG
i (xi )

According to [1], x i
l |xi ∼ CN (µi

x , σ
2
x) where

µi
x = wθlγdiag(ŵθ)

HΣ̂−1xi ,

σ2
x = γl − γdiag(ŵθ)

HΣ̂−1diag(ŵH
θ )γ

T×

[1] T. W. Anderson, An introduction to multivariate statistic alanalysis, vol. 2, Wiley New York, 1958.
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MLE-PL vs S-MLE-PL

minimize
Ψ̃,w̃θ

LG(x̃
i ; Σ̃(Ψ̃, w̃θ))

θ1 = 0, w̃θ ∈ Tp, Ψ̃ real symmetric

iterative algorithms, sophisticated

minimize
γ,γl ,wθl

LG(x̃
i ;γ, γl ,wθl )

γ, γl real, |wθl | = 1, θ1 = 0

closed forms for each parameter, simple
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Simulation - Computation Time

Simulation parameters

• Ψ̃: Toeplitz matrix with coherence coefficient ρ = 0.7

• l = p + 1 = 20 SAR phases: random values in [−π, π]

• Covariance matrix : Σ̃ = diag(w̃θ)Ψ̃diag(w̃θ)
H

• n i.i.d samples simulated following the CN (0, Σ̃)

S-MLE-PL MLE-PL

O(p3) O(niter p
3)

Complexity comparison of S-MLE-PL and
MLE-PL

2 × 101 3 × 101 4 × 101 6 × 101

p

10 4

10 3

10 2

tim
e 

(m
in

)

S-MLE-PL MLE-PL standard PL

Computation time variation versus l , n = 2× l
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Real data - Mexico city

Mexico City

• population > 20M, highly dynamic

• rapid urbanization → increased water demand

• primary water from aquifers → subsidence and city
deformation
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Real data - Results

• mission: Sentinel-1

• acquisition time span: 14 August 2019 - 10 April 2020

• number of images: 20 images

• sample size: n = 64

MLE-PL S-MLE-PL
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Quality assessment of phase estimation

The quality of the PL may be assessed by the goodness of the fit between the observed phases and the estimated

γpost =
Re(
∑l

q=1

∑l
i=q+1 e

(∆θiq−(θ̂i−θ̂q)))

l(l − 1)/2

MLE-PL
S-MLE-PL

Comparison of posteriori coherence maps estimated by MLE-PL and S-MLE-PL
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Conclusions

Conclusions

• Novel approach: efficient incorporation of new SAR images within a PL framework

• Performance: matches that of offline approaches (simulations as well as real data)

• Cost: lower computational costs than traditional offline approaches

Perspectives

• generalization of S-MLE-PL to a block of new SAR images

• estimate the displacement time series and compare the results with GPS data
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Appendix - S-MLE-PL simulations

Simulation parameters

• Ψ̃: Toeplitz matrix with coherence coefficient ρ ∈ [0.5, 0.7, 0.9]

• l = 20 SAR phases: random values in [−π, π]

• Covariance matrix : Σ̃ = diag(w̃θ)Ψ̃diag(w̃θ)
H

• n i.i.d samples simulated following the CN (0, Σ̃)

Approaches to be compared

• 2p-InSAR : phase estimated from n-pixel averaged interferograms formed with respect to the first image

• classic PL

• MLE-PL

• S-MLE-PL (our approach)
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Appendix - S-MLE-PL simulations results

Gaussian distributed input data

50 100 150 200 250 300 350
n

0.5

1.0

1.5

2.0

M
SE

At date 20, Gaussian model, p+1=20, rho=0.5

S-MLE-PL
GPL
standard PL
2p-InSAR

50 100 150 200 250 300 350
n

0.5

1.0

1.5

2.0

M
SE

At date 20, Gaussian model, p+1=20, rho=0.7

S-MLE-PL
MLE-PL
standard PL
2p-InSAR

50 100 150 200 250 300 350
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0.0
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M
SE

At date 20, Gaussian model, p+1=20, rho=0.9
S-MLE-PL
GPL
standard PL
2p-InSAR

MSE of InSAR phases estimates using 2p-InSAR, classic PL and MLE-PL and S-MLE-PL with Gaussian distributed
input data where l = 20, ρ ∈ [0.5, 0.7, 0.9], using 1000 Monte Carlo trials
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Appendix - Sequential integration of several new images

Approaches to be compared
• MLE-PL processing all t images
• S-MLE-PL where the l = p + 1 past phases are computed using MLE-PL
• S-MLE-PL where the l = p + 1 past phases consist of p phases calculated using MLE-PL approach and

(p + 1)th phase calculated using S-MLE-PL

25 50 75 100 125 150 175 200
n

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
SE

At date 20, Gaussian model, rho=0.7
S-MLE-PL twice
S-MLE-PL
MLE-PL

MSE on wθl with increasing n, l = 20, ρ = 0.7 using 1000
Monte Carlo trials.
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Appendix - Quality Assessment of Phase Estimation

Discrepancy between MLE-PL and S-MLE-PL

[1] H. Ansari and F. De Zan and R. Bamler, Sequential estimator: Toward efficient InSAR time series analysis, IEEE Transactions on
Geoscience and Remote Sensing, 2017
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