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1 Abstract

In this paper, we address the topic of sequential integra-
tion of new Synthetic Aperture Radar (SAR) images in
interferometric phase estimation. When a newly acquired
data arrives, the data set expands and can be partitioned
to two distinct blocks, one representing the historical SAR
images and the other representing the newly acquired data.
The proposed approach exploits sequential estimation of
the covariance matrix of SAR images and the interfero-
metric phases, taking the existing data set as prior infor-
mation. This approach simplifies the continuous interfero-
metric phase estimation by incorporating new data into the
existing context. Furthermore, it presents the advantage of
reduced computation time compared to the traditional ap-
proaches, making it a more efficient solution for operational
displacement estimation.

2 Context

The short revisit cycle of the Sentinel-1 mission (6 − 12
days) enables the acquisition of unprecedented SAR data
volumes. Once a new image arrives, most classical meth-
ods require the replay of the algorithm on the entire of or
part of the data set. The literature has not extensively ex-
plored robust sequential processing of this data, as indicated
by the limited number of studies addressing this specific
topic. The most known sequential approach was developed
in [1] where the main idea is to partition the entire stack of
SAR images into m mini-stacks. The algorithm starts by
treating the first mini-stack and then compressing it into a
single virtual image through principal component analysis
(PCA). The virtual image obtained is then connected to
the next mini-stack, and so on. This approach, based on
the standard PL [2–4] (which uses the modulus of the Sam-
ple Covariance Matrix (SCM) as a plug-in for the coherence
matrix), requires an extended period to form the adequate
fixed size mini-stack. This constraint limits the method’s
ability to respond to real-time needs.

3 Methodology

We propose an approach (namely S-MLE-PL) to tackle the
difficulties arising from the growing volumes of SAR data
produced by current and upcoming Sentinel-1 SARmission.
It enables the sequential integration of newly acquired data,
yielding better results than classical approaches that pro-
cess the entire data set at once. Additionally, the proposed

sequential method offers the advantage of computational ef-
ficiency compared to the classic approaches.
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Figure 1: SAR data representation including both previous and
recently obtained images. The local neighborhood of size n is
denoted by gray pixels (sliding window).

We consider a stack of l = p + 1 SAR images, for a
given pixel, we define a local homogeneous spatial neigh-
borhood of size n, denoted {x̃i}ni=1, where x̃i ∈ Cl, for all
i ∈ [[1, n]]. We can assume that each pixel of the local patch
is distributed as a zero mean Complex Circular Gaussian
(CCG) with a covariance matrix [5], i.e., x̃ ∼ N (0, Σ̃).
Taking into account the phase closure property of the In-
SAR stack, the covariance matrix adheres to the following
structure [6]:

Σ̃ = Ψ̃ ◦ w̃θw̃
H
θ (1)

where the symbol ◦ signifies element-wise (Hadamard) mul-
tiplication, Ψ̃ is the real core of the covariance matrix. The
hermitian structured covariance matrix can be rewritten as

Σ̃ =

(
Σ w∗

θl
diag(wθ)γ

T

γdiag(wθ)
Hwθl γl

)
(2)

where Σ denotes the covariance matrix between the previous
SAR images, γ signifies the correlation vector between the
newly acquired data and the previous ones, γl represents
the variance value of the newly acquired data, wθ indicates
the vector of phase difference exponential of the previous
SAR images, and wθl is the exponential of the phase of the
latest data.

Considering the covariance matrix structure in (2) and
assuming that {x̃i}ni=1 follows a CCG distribution, the as-



(a) Interferogram estimated by MLE-PL (b) A posteriori coherence estimated by MLE-PL

(c) Interferogram estimated by S-MLE-PL (d) A posteriori coherence estimated by S-MLE-PL

Figure 2: Comparisons of interferograms and a posteriori coherence for MLE-PL and S-MLE-PL.

sociated negative log-likelihood for the entire dataset can
be expressed as:

LG(γ, γl, wθl) ∝ n log (v) +

n∑
i=1

yi∗yi

v
. (3)

where yi = xi
l − wθl γ diag(ŵθ)

HΣ̂−1xi

and v = γl − γ diag(ŵθ)
HΣ̂−1diag(ŵθ)γ

T

The PL problem [6] can be represented by a maximum
likelihood approach for the covariance structure (1), assum-
ing the Gaussian model for a given prior estimate of Ψ̃. In
this work, we propose to estimate simultaneously the coher-
ence parameters and the new phase.

min
γ,γl,θl

LG(γ, γl, wθl)

subject to γ, γl real, |wθl | = 1, θ1 = 0
(4)

For simplicity, we adopt the convention θ1 = 0, which is
equivalent to |[w]1| = 1. The optimization of LG, defined in
(3), will be addressed in a unified manner using a Block Co-
ordinate Descent (BCD) algorithm, where each parameter
will have an analytical update form.

4 Real data

We use a stack of 20 SAR images over the Mexico City
acquired every 12 days, from 14 August 2019 to 10 April
2020, corresponding to 8 months to assess the performance
of the proposed S-MLE-PL approach. The interferograms
estimated by both MLE-PL and S-MLE-PL approaches,
are illustrated in Fig. (2a), (2c). In both cases, the multi-
looking window, denoted as n = 8 × 8, remains the same.
The MLE-PL and S-MLE-PL methods yield the same re-
sults, however the sequential approach demonstrates sig-
nificantly more reduced execution time than the MLE-PL
when applied to real data. The quality of the PL may be
assessed by the goodness of the fit between the observed
phases and the estimated Fig. (2b) and (2d)

γpost =
Re(

∑l
q=1

∑l
i=q+1 e

(∆θiq−(θ̂i−θ̂q)))

l(l − 1)/2

The closer the value of this parameter is to 1, the better
the result. The sequential method shows values closer to 1
more often than the offline method, where a lot of noise and
points colored in green and yellow can be seen, indicating
values between 0.4 and 0.6.

5 Conclusions

We present a novel sequential PL approach that allows in-
corporating efficiently new SAR images in interferometric
phase estimation in a PL framework. According to syn-
thetic simulations and real data applications, the proposed
S-MLE-PL approach presents the same performance and
lower computational cost compared to MLE-PL.
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