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Single Look Complex (SLC) is characterized by a complex signal z—a-el®

e Amplitude (a): strength of the backscattering
e Phase (#): geometric information, random information 6 = 6,andom + fgeometric

(a) amplitude (b) phase

Figure: Sentinel-1 SAR image over Mexico City
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2 coregistered SLC images of the same scene at different times — interferogram
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where
e Q is the spatial neighborhood of the pixel (i, )
e v is coherence (€ [0,1]), representing the similarity between the two images
e A0 represents the phase difference (A0 = 61 — 62, 6 € [—7, 7])

(a) coherence (b) phase difference

Figure: Interferogram over Mexico City
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ulti-temporal InSAR

Interferogram of 2 SLC images

e Decorrelation noise
e Atmospheric disturbances

e Measurement accuracy (centimetric)

Multi-temporal interferograms

e Building interferometric networks from a time series of SAR
images

e Continuous monitoring of Earth deformations

e Improvement in measurement accuracy (millimetric)
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arch questions

Consider a multivariate random vector x = [x1, ..., xp] "
For all (1,k) € {1,...,p}2,
> . )
Qé X = a,efe/, Xk = akefek
@/ ‘
<
&‘ The second-order moment

E[x;(xk)*] = vi,10601 exp(j(0) — Ok))

— covariance matrix

Elxx"] £ £ = Wo (wow})

where
< Spatial ® 7 : coherence coefficient between xj and x;
e 0. standard deviation of x;
Figure: Representation of SAR time series using a e X : covariance matrix
sliding window of size n pixels [6] e W: coherence matrix
e wy: vector of phase exponential

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR"
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arch questions

Conclusions

Consider a multivariate random vector
@:{/@" x=[x1,...,x]"
4’: {xi};’:l Vi € [1,n], a set i.i.d — x ~ CN(0, X)
The log-likelihood is
E:;- L(x;X) = —log (ﬁ f(xi,}:)>
i=1
o nlog(|Z|) + nTr(Z71S)

_ 1 n i yiH
where S = = > - x'x’
Spatial n 2im1

Figure: Representation of SAR time series using a
sliding window of size n pixels [6]

Covariance matrix: E[xx"] £ ¥ = Wo (wow})

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InNSAR".
(© Dana EIl Hajjar



Standard Phase Linking (PL)

Principle:
Estimate p — 1 phase differences from p SAR images — wg

[1] A. Guarnieri et al. (2008) "On the exploitation of target statistics for SAR interferometry applications".
[8] P.V.H. Vu et al. (2022) "A new phase linking algorithm for multi-temporal InSAR based on the Maximum Likelihood Estimator".

(© Dana El Hajjar 9
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Standard Phase Linking (PL)

Principle:
Estimate p — 1 phase differences from p SAR images — wg

Assuming that W is known, the method is equivalent to optimizing the following problem [1]:
minimize wl (W7o S)wy
wo

subjectto 61 =0

[1] A. Guarnieri et al. (2008) "On the exploitation of target statistics for SAR interferometry applications".
[8] P.V.H. Vu et al. (2022) "A new phase linking algorithm for multi-temporal InSAR based on the Maximum Likelihood Estimator".
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Standard Phase Linking (P

Principle:
Estimate p — 1 phase differences from p SAR images — wg

Assuming that W is known, the method is equivalent to optimizing the following problem [1]:
minimize wl (W7o S)wy
we

subjectto 61 =0

PROBLEM 1!11
In reality, W is unknown

e [1] proposed to use a plug-in: W, ,,q = |S| — not optimal
e [8] proposed to estimate W jointly with wg

[1] A. Guarnieri et al. (2008) "On the exploitation of target statistics for SAR interferometry applications".
[8] P.V.H. Vu et al. (2022) "A new phase linking algorithm for multi-temporal InSAR based on the Maximum Likelihood Estimator".

© Dana El Hajjar 9



PL
00008000

— The optimization problem [8]

minimize  £(x’; Z(V, wy)) Bloc 1
V,wg
subjectto 61 =0 Update W :
wg €Ty Minimize £ with fixed wy
v €SP v .D .
Bloc 2 BCD
with T, = {wg € CP||[wg];| = 1,Vi € [1, p]} and
SP:{AGRPXP‘A:AT} Update wy : D
Minimize £ with fixed W Niter
i . (Phase Linking) MM
2 unknowns to estimate — Block Coordinate Descent
Algorithm (BCD) + Majorization-Minimization (MM)

[8] P.V.H. Vu et al. (2022) "A new phase linking algorithm for multi-temporal InSAR based on the Maximum Likelihood Estimator".
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00000800
wards a Robust Model: Scaled Gaussian distributio

Figure: Empirical distribution of the real part of Sentinel-1 SLC
samples taken from a 50 x 50 window on the image acquired
on July 3, 2019 [6]

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".

(© Dana El Hajjar

Consider that the set {x'}"_, is i.i.d and follows a Scaled
Gaussian distribution x’ ~ CA(0, 7,X)

f(xj) o det(7;X) P (7XI-H(T"}:)71XI.)

The log-likelihood is

L(x;Z, {m};) = nlog |Z| + nTr{E 1S}

n
+ Z plog 7; 4+ const
i=1

11



Robust Phase Linking (MLE-PL

— The optimization problem [6]

minimize L(x", Z(V,w
yinimize (x'; X(W, wo))
subject to 01 =0
wg € Tp
Ve SP

with T, = {wg € CP||[wp];| = 1,Vi € [1, p]} and
SP={AcRP*PIA=AT}

3 unknowns to estimate — Block Coordinate Descent
Algorithm (BCD) + Majorization-Minimization (MM)

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".

© Dana El Hajjar

Bloc 1

Update {7;}]_, :
Minimize L with fixed wg and W

Bloc 2

Update W :
Minimize L with fixed wg and {7;}]_,

Bloc 3

Update wg :
Minimize L with fixed W and {7;}]_,
(Phase Linking)

Niter

MM

Niter

BCD
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Covariance Fitting Interferometric Phase Linking (COFI-PL

MLE-PL [6]
) Motivations to COFI-PL:
- i
W{I,},lélf{mﬂlzfl L' 2(V, we)) e phase ambiguity
subjectto 61 =0 e reduction of computational cost
wg € Tp
W e SP

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".
[7] P.V.H. Vu et al. (2024) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".

(© Dana El Hajjar 13



MLE-PL [6]

minimize
V,we,{7i}]_;
subject to

L(x'; Z(W, wp))

01 =0
WQETP
W e SP

Motivations to COFI-PL:
e phase ambiguity

e reduction of computational cost

COFI-PL involves refining the structure of the covariance matrix estimator by minimizing a projection criterion [7].

minimize
wo
subject to

A(Z, Wowowl)

]
01 =0
wg € Tp

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".

[7]1 P.V.H. Vu et al. (2024) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".

© Dana El Hajjar
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[e] le]e}
or several images are on the way

Temporal axis Vi=1,...,n
to ta tp
to ¢ to ¢
e t @ xi
. x5
<!
X = .
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“1 “1 P (p)
th ¢ o h o v
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wn n

Covariance matrix phases vector
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[e] le]e}
e or several images are on the way ...

Vi=1,...,n

to t1 tp tpt1 tpik Xq

Temporal axis

t
0 4 X5

to ¢
e o X :
X . — X = ?<p
p i Xpi1
P2 (p) .

b e

Xi
Pk 7 (pr1)

sixe [esodwa)
sixe |esjodws |

tpr1

fp 16
- . tptk q

Covariance matrix

At each new SAR acquisition

tork . . . .
? [ e Re-Estimation of the increasing
covariance matrix

o Re-Estimation of the phases

phases vector

— Huge computation time

© Dana El Hajjar 14
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Sequential Estimator (SE)

Mini-stack Division: Split the time
mini- series into small temporal blocks.

(2 2)

stack 1

Phase Linking: Estimate relative
phases in each mini-stack.

mini-

stack 2

(5 =)

T Data compression: Reduce data
mini-
to one virtual image per block.

stack 3

\

Datum connection: Link all mini-
stacks and correct phase bias by
a PL on all compressed versions.

N2 YA D A,

(o 2 0)

[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InNSAR time series analysis".

(© Dana EIl Hajjar 15



Research questions
[e]e] e}

Sequential Estimator (SE)

Mini-stack Division: Split the time
series into small temporal blocks.

mini-

(2 2)

stack 1
Phase Linking: Estimate relative

phases in each mini-stack.

mini-

stack 2

mini-

stack 3

(5 =)

Data compression: Reduce data
to one virtual image per block.

()

Datum connection: Link all mini-
stacks and correct phase bias by
a PL on all compressed versions.

N2 YA D A,

(o 2 0)

based on Gaussian assumptions

lack of robustness against various
for SAR imagery

significant time to assemble
forms of temporal decorrelation

meaningful mini-stacks

[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InNSAR time series analysis".

15

© Dana El Hajjar



Research questions

| robustness | sequential

MLE-PL [6] | v \ X
RECAP COFI-PL [7] | v \ X
SE [4] | X | v

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".
[7] P.V.H. Vu et al. (2024) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
4] H. Ansari et al. (2017 equential Estimator: Toward efficient In: time series analysis".

H. A i | s ial Esti T d eff InSAR | "

© Dana El Hajjar 16



Research questions

| robustness | sequential

MLE-PL [6] | v \ X
RECAP COFI-PL [7] | v \ X
SE [4] | X | v

How can we develop a sequential method that is more cost-effective than traditional offline approaches while
ensuring:

e The statistical relationship between historical images and new images remains optimal.
e The integration and regularization tools for incorporating new image blocks are maintained.

e The cost of storage is minimized.

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".
[7] P.V.H. Vu et al. (2024) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InNSAR time series analysis".
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InNSAR

Research questions Contributions Conclusions

Data model S-MLE-PL

to

IHEECO
[ |
10000

Spatial

Spatial

Newly
acquired
data

o o [ o [
OO0O00OEEED

Spatial

Figure: Representation of SAR time series with a sliding

{X/i =1

window containing n pixels x'.

(© Dana EI Hajjar

Historical
data

{Xi;;l

We consider a set {x'}"_; where

X' =1[x,...,x,, %] €Cl=pt1
N—_——

xi

The set {;'}11, Vi € [1,n], is i.i.d., such that

X~ CN(0,7E).

The covariance matrix can be rewritten as

§_ | )X ) ngdiag(Wg)'yT
v diag(we)" wy, gl

17



MLE problem

0O0@0000000

MLE-PL (offline)

_minimize
V,weg,{7i}]_,

subject to

L(X'; W, W, {ri}_,)

01 =0,wp €T, WS

S-MLE-PL (sequential)

minimize
Yviswe Tty
subject to

Ly, 1, wey, {i304)

01 =0, |wp,| = 1,7, real

[2] T.W. Anderson (1962) "An introduction to multivariate statistical analysis".

© Dana El Hajjar
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LE probl

MLE-PL (offline)

_minimize
V,weg,{7i}]_,

subject to

S-MLE-PL (sequential)

L(}i; \TJ’ weo,{Ti}7_;) minimize E(}i; Y5 v Wo,, {Tiq)
Yviswe Tty
0: =0,we €T, WeES subject to 01 =0, |wg, | = 1,7, real

L&, 1, wey, {71} -q)
n . . .
== > LIx v, v, we,, {77} oy)
i—1
+ L5 i)
According to [2], xj|x' ~ CN (i1}, o2) where

oy = Wg/'ydiag(vAve)Hfflx"

o 02 = v — ~diag(we)"S " diag(wh)y"

[2] T.W. Anderson (1962) "An introduction to multivariate statistical analysis".

(© Dana El Hajjar
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MLE problem

ributions
[e]e] lelelelelele]e]

MLE-PL (offline)

_minimize
V,weg,{7i}]_,

subject to

L(X'; W, W, {ri}_,)

01 =0,wp €T, WS

S-MLE-PL (sequential)

minimize L', v, we,, {Ti Hq)
Yoviswe Tty

subject to 01 =0, |wg, | = 1,7, real

wo, is estimated with :

- estimated past
® Wy
P

- new data

statistics of

the conditional
distribution of
new image with
respect to the past

L5,y woy s {7it1)
n . . .
== > LIx v, v, we,, {77} 1)
i1

+ L T )

According to [2], xj|x' ~ CN (1}, 2) where

[2] T.W. Anderson (1962) "An introduction to multivariate statistical analysis".

© Dana El Hajjar

ng‘ydiag(ﬁlg)Hiile

v/ — ~ydiag(We)"E " *diag(wp )"




MLE problem

(© Dana EI Hajjar

minimize
Yoviswo Tty
subject to

ﬁ(ii; Y5V Wey s {Ti},tl)

01 =0, |wg, | =1,7, real




MLE problem

minimize L&', we,, {7i}4)
Yoviswo Tty
subject to 01 =0, |wg, | = 1,7, real

Bloc 1
Update {7;}_
Minimize L W/th fixed ~v and ~o and wp,

v

Bloc 2
Update ~y:
Minimize £ with fixed yo, wg, and {T;}1 4

7 j

Bloc 3 nj
iter

Update ~o: BCD

Minimize £ with fixed ~, wg, and {;}{_y

v

Bloc 4
Update wy /
Minimize £ with fixed o, v and {7;}_,

(© Dana EI Hajjar



MLE problem

_minimize  L(X'; W, wg, {7i}}_;) minimize L', we,, {71} 4)
"”"7’67{71}7:1 ’Y«,",'/«,W(J,~{Ti}7:1
subject to 01 = 0,Wg € T/, W € S/ subject to 01 =0, [we,| = 1,7,y real
Bloc 1
Bloc 1 Update {7}
Update {T,'}Ll Minimize L W/th fixed v and ~o and wp,
Minimize L with fixed wg and W v
Bloc 2
12 Update ~:
Bloc 2 Minimize £ with fixed vo, wg, and {7;}7 4
Update 2 ) 17 :D
Minimize L with fixed Wg and {7;}]_, Bloc 3 Niter
giteb Update ~o: BCD
v C Minimize L with fixed ~, wg, and {7;}"_
0, i=1
Bloc 3 ¥
Update Wy: _ Bloc 4
Minimize L with fixed W and {7;}[_4 o Update we, -
MM Minimize L with fixed vo, ~ and {7i}]_4
Ty 3 . .
complexity: O(/3) complexity: O(p?) with / > p

© Dana El Hajjar 19



Testing our algorithms on real data

Mexico City

Hawa Island

© Dana El Hajjar 20



Contributions
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Testing our algorithms on real data

Mexico City

Hawa Island

N —
(© Dana EI Hajjar 20



Study Area: Mexico City

Study area context
® One of the most densely populated urban areas> 20M
e Population grew from 3 M (1950) to 22.7 M (2025)

e Rapid urbanization = groundwater extraction = land subsidence

Figure: Mexico City (source : Google Earth)

Figure: Evolution of Mexico City's population (source : World Population Reviews)

© Dana El Hajjar 21
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Dataset

General Information:
e Sensor: Sentinel-1 (C-band)
e Acquisition mode: Interferometric Wide Swath (IW)
e Orbit direction: Descending
e Polarization: VV
e Path / Frame: 143 / 526

Temporal Coverage:
o Number of images: 40
e Time span: August 14, 2019 — December 6, 2020
e Total duration: 480 days (~ 1.3 years)

e Temporal interval: 12 days

GPS Data:

e Stations: ICMX, UNVA, MMX1 (temporally and spatially
aligned with the SAR dataset)

e Measurements: 3D displacements (East, North, Up) Figure: Map of the available Global Positioning System (GPS)

© Dana El Hajjar 22
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Results on Real Data: Mexico City

We evaluate the proposed method using a real dataset of Mexico City. The dataset consists of 20 satellite images
acquired between August 14, 2019 and April 10, 2020 with a spatial window of size 7 x 7 pixels.

Methods and input data:

e S-MLE-PL: uses p = 19 historical images and one new image.
e MLE-PL [6]: uses all / = 20 available images.

o SE [4]: uses a temporal sliding window of size s = 5 images.

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".
[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InNSAR time series analysis".

(© Dana El Hajjar 23
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Results on real data: Mexico City

S-MLE-PL MLE-PL SE

Figure: Close-up view of the wrapped and the unwrapped interferograms (14 August 2019 - 10 April 2020) estimated by S-MLE-PL
(p+1=20), MLE-PL [6] and SE [4] (s = 5) with a spatial window of size n =7 x 7.

© Dana El Hajjar 24
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Results on real data: Mexico City

| RMSE (}) | SSIM (1) | Colinearity (1) [3] | computation time

MLE-PL [6] | Ref | Ref | 0.61 | 38.4 min
S-MLE-PL | 287 | 070 | 0.57 | 4.72 min
SE[4 | 296 | 067 | 0.76 | 16.97 min

Table: Quantitative comparison between the S-MLE-PL, MLE-PL [6], and SE [4] approaches.

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".
[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InNSAR time series analysis".
[3] B. Pinel-Puysségur et al. (2012) "Multi-link INSAR timeseries: Enhancement of a wrapped interferometric database".

(© Dana El Hajjar 25
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Data Model

Limitations:
e S-MLE-PL adds one image at a time, limiting multi-image
information.
e S-MLE-PL does not allow the direct use of regularization
techniques.
— We introduce S-COFI-PL approach

© Dana El Hajjar



InNSAR

Research questions Contributions

Data Model
t Historical re—
data {Xi}?:l imitations:

e S-MLE-PL adds one image at a time, limiting multi-image
information.

e S-MLE-PL does not allow the direct use of regularization
techniques.

— We introduce S-COFI-PL approach
Spatial

We consider a set {X'}7_;, where
Nery ;{i _ [Xi Xi Xi Xi ]T c (Cp+k
— ; = 1X1 s Xpy Xpgp1y -5 Xpk
T acquired ———
= g ~
a data i i
%] <iln
=
>
Spatial

Each pixel is assumed i.i.d. and follows a zero-mean CCG
distribution: X ~ CN(0, X).

Figure: Representation of a SAR time series using a
sliding window of n pixels X'.

(© Dana EIl Hajjar
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Problem reformulation

minimize £d (i,{i}OVNV()VNVZ’ )
Wo x
subject to 01 =0
wg € Ty

© Dana El Hajjar 27
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Problem reformulation

minimize £d (i,{i}OVNV()VNVZ’ )
Wo x
subject to 01 =0
wg € Ty

Covariance matrix plug-in
o SCM: TV =157 g
o PO: ¥V = % S0 V'Y where ¥ = &1(X) and & : yel? — &/f
e ...

+ Regularization

~ ~ sU
e Shrinkage to identity: ¥°K = ¥V + (1 — 5)trﬁk)lp+k

1 if |[i—j|<b
0 otherwise

o Tapering: ¥8W = W(b) o TV with [W(b)]; = {

© Dana El Hajjar 27
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Problem reformulation

minWir;ﬁze ffd (Vo Wowh )
subject to 01 =0
wg € Ty
Covariance matrix plug-in
o SCM: 3U = %27:1 xixiH Matrix distances
e PO: TU — 711 S, 575 where § = ®1(%) and & : v/ — off o Kullback-Leibler (KL) divergence:

° ... fiKL(\Tvg) = Wg(\i_l o ¥)We
+ Regularization
- ~ sU
e Shrinkage to identity: ¥°K = ¥V + (1 — 5)trﬁk)lp+k
1 if [i—jl<b FEN (W) = —2Wg (W 0 T)We

0 otherwise

e Frobenius norm (FN):

o Tapering: ¥8W = W(b) o TV with [W(b)]; = {

© Dana El Hajjar 27
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Optimization problem resolution - MM algorithm (1

S-COFI-PL
S-COFI-PL optimization problem
— no analytical solution minimize fg (27 Vo Vve\Tvg’)
Weo
— iterative algorithm subject to  wg € T,
1 =0

[10] Y. Sun et al. (2016) "Majorization-Minimization algorithms in signal processing, communications, and Machine Learning".

© Dana El Hajjar 28
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Optimization problem resolution - MM algorithm (1/

S-COFI-PL

S-COFI-PL optimization problem

— no analytical solution minimize fg (27 Vo Vve\Tvg’)
Weo
subject to  wg € Ty,

— iterative algorithm
01 =0

mi)r:éni/ize f(x)
Majorization-Minimization (MM) algorithm [10]:
e step 1: majorizing the cost function by a g(.|x¢):
f(x) < g(x|xt)
e step 2: minimizing the obtained function g(x|x¢)

[10] Y. Sun et al. (2016) "Majorization-Minimization algorithms in signal processing, communications, and Machine Learning"
(© Dana El Hajjar 28
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Optimization problem resolution - MM algorithm

stepl:

ILemma The concave quadratic form f : w — —w/"Hw is majorized by —Re(wHHw(t)) with equality at point w(?). I

iFN(‘TVG) = _2Wg’(‘zp‘ oXp)wg — 2W9H(‘ZP"‘)T © (an)H)Wg - 2W9H(‘zpn‘ ° Xpn)wg — 2W9H(|Zn‘ oXn)we

is majorized by the following expression

g(Wolwy)) = —Re (m” - 4[(|pnl © Tpn)we + (|Za] 0 z»w&,”})

© Dana El Hajjar 29
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Optimization problem resolution - MM algorithm

stepl:

|Lemma The concave quadratic form f : w — —w/"Hw is majorized by —Re(wHHw(t)) with equality at point w(®). |

N (We) = —2wl (|Zp] 0 Zp)we — 20 (IZpnl) T o (Epn)™ Yo — 2Wa" (I pn| © Epn)wo — 2we " (|Za| 0 Zn)wo

is majorized by the following expression

#(wo[1§) = Re (o' - 4[(1Zpol 0 Zpr)wo + (1ol E)w})] )

step 2:

Lemma The solution of the minimization problem minyet, —Re(w" (") is obtained as w* = ®p(w () with

Py 1 x = rel? — ef

The problem is equivalent to 7mir111‘ — Re <W9H . 4[(|zpn| 0 Tpn)Weo + (|Zn] 0 Tn )—(t)] )
wg €Ty

2
and the solution is obtained as wgﬂ) <I>T(|P|'/g))

© Dana El Hajjar 29



Results on Real Data: Mexico City

We evaluate the proposed method using a real dataset of Mexico City. The dataset consists of 40 satellite images
acquired between August 14, 2019 and December 6, 2020 with a spatial window of size 7 x 7 pixels.

Methods and input data:

e S-COFI-PL: uses p = 35 historical images and k = 5 new images.
e COFI-PL [7]: uses all | = 40 available images.

o SE [4]: uses a temporal sliding window of size s = 5 images.

[7] P.V.H. Vu et al. (2025) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InNSAR time series analysis".

(© Dana El Hajjar 30
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sults on real data: Mexico City
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Figure: Close-up view of the wrapped and the unwrapped interferogram (14 August 2019 - 6 December 2020) estimated by S-COFI-PL
and COFI-PL [7] using KL divergence and SK-PO and by SE [4].
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Figure: Close-up view of the wrapped and the unwrapped interferogram (14 August 2019 - 6 December 2020) estimated,by S-COFI-PL
and COFI-PL [7] using FN and BW-PO, and by SE [4].
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sults on real data: Mexico City

‘ RMSE ‘ SSIM ‘ Colinearity [3] ‘ computation

() (1) (1) time
KL S-COFI-PL 7.54 0.62 0.64 0.44h
SK-PO COFI-PL [7] 7.73 0.55 0.60 0.52h
FN S-COFI-PL 2.07 0.89 0.89 0.37h
BW-PO | COFI-PL [7] Ref Ref 0.89 0.43h
SE [4] | 7.47 | 024 | 0.72 | 0.5h
Table: Comparison of COFI-PL [7] and S-COFI-PL and SE [4].
Recap KL : Kullback-Leibler divergence FN : Frobenius Norm
BW : banding SK : Shrinkage-to-identity

PO : Phase-Only

[7] P.V.H. Vu et al. (2025) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InNSAR time series analysis".
[3] B. Pinel-Puysségur et al. (2012) "Multi-link INSAR timeseries: Enhancement of a wrapped interferometric database".
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Contributions
000

Data model

Limitations:

e S-MLE-PL and S-COFI-PL require storing and
processing all historical images.

e This increases memory and computation
requirements.

—> We introduce SI-IPL approach
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e S-MLE-PL and S-COFI-PL require storing and
processing all historical images.

e This increases memory and computation
requirements.

—> We introduce SI-IPL approach

for j=2 added images

-~
~
——mm e m -
|
|
! 3 |
covariance matrix I Z(U ~ 1
of the entire time series fovariance 2(2)
matrix covariance 1 . .
) ) e p: size of the temporal window
plug-in matrix 1
for j=1 plug-in | ©® k: size of the stride or the new
|
|

e ¢ = p — k: size of the overlap
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Optimization problem

COFI-PL (offline)
minimize ffN(i,lTlo woweh)
Wy £
subjectto 61 =0
ﬁ/g eTy

[7] P.V.H. Vu et al. (2025) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
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Optimization probl

COFI-PL (offline)
minimize ffN(i,lTlo woweh)
Wy £
subjectto 61 =0
ﬁ/g eTy

SI-IPL (sequential)

minimize  fEN (X, W o wiyw
i £, (F0: Vo) o Wi W)

subject to  w(;) € Tp
2

h(w()) = H (W[({{IU - w()

[7] P.V.H. Vu et al. (2025) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
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Optimization proble

Algorithm MM algorithm for SI-IPL

COFI-PL (offline)

minimize ffN(i, \Tl ° WGWQH) Input: X € CPXP A A
wo = Compute : M = 4(|X;| 0 X))
subjectto 61 =0 repeat
wg €T () Wo(j—
W) = Mwg) 42X (e
g = onto)
. t=t+1
SI-IPL (sequential) until convergence

Output: \7V(j) = Wend € Tp

minimize  fEN (X, W o wiyw
i £, (F0: Vo) o Wi W)
subject to  w(;) € Tp

2

h(w()) = H (W[({{IU - w()

[7] P.V.H. Vu et al. (2025) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".

© Dana El Hajjar 35



Contributions

00@000

Optimization proble

Algorithm MM algorithm for SI-IPL

COFI-PL (offline)

minimize ffN(i, \Tl ° WGWQH) Input: X € CPXP A A
wo = Compute : M = 4(|X;| 0 X))
subjectto 61 =0 repeat
wg €T () Wo(j—
W) = Mwg) 42X (e
g = onto)
. t=t+1
SI-IPL (sequential) until convergence

Output: \7V(j) = Wend € Tp

minimiee o () W) 0 wiywe™)
+Ah(w(;))

subject to  w(;) € Tp method complexity
SI-IPL O(p?)
2 COFI-PL [7] 0(1?)

h(w()) = H (W[({{IU - w()

with | > p.

[7] P.V.H. Vu et al. (2025) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
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Results on Real Data: Mexico City

We evaluate the proposed method using a real dataset of Mexico City. The dataset consists of 30 satellite images
acquired between August 14, 2019 and July 16, 2020 with a spatial window of size 7 x 7 pixels.

Methods and input data:

e SIHIPL: uses p=5,¢ =4, and k = 1.
e COFI-PL [7]: uses all I = 30 available images.

o SE [4]: uses a temporal sliding window of size s = 5 images.

[7] P.V.H. Vu et al. (2025) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InNSAR time series analysis".

(© Dana El Hajjar 36



[e]e]e]e]
Results on real data: Mexico City

SI-IPL COFI-PL FN BW-PO SE

Figure: Close-up view of the wrapped and the unwrapped interferogram estimated by SI-IPL, COFI-PL [7] and SE [4].
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sults on real data: Mexico City

method | colinearity [3] (1) | SSIM (1) |  time

COFI-PL [7] | 0.91 | Ref | 19.35 min
SHIPL | 0.90 | 094 | 3.9min
SE[4] | 0.84 | 085 | 17.1min

Table: Quantitative values for the evaluation of the estimated phases of SI-IPL, the SE [4] and COFI-PL [7].

[3] B. Pinel-Puysségur et al. (2012) "Multi-link InSAR time series: Enhancement of a wrapped interferometric database".
[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InNSAR time series analysis".
[7] P.V.H. Vu et al. (2025) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
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Temporal monitoring of SAR image evolution (collab. with Mohammed Cherifi (Algeria))

Classic model:

. ) . X no temporal dynamics

X = ,yl eJ t +E, o ) ) )

g & & X prediction and/or interpolation is not
possible
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g & & X prediction and/or interpolation is not
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Proposed model:
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tives (1/3)

Temporal monitoring of SAR image evolution (collab. with Mohammed Cherifi (Algeria))

Classic model:

i i JOt i
Xt = V¢, € €4
t =V + t

Proposed model:

; = - ilo: :
x, = (|(Foe ™% + »y,-)ej-ﬁ— e

Auto-regressif mode (AR)
model on the phase

ij = Zszl Ak etj—k + b;
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X prediction and/or interpolation is not
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e Latent vector: z = (31,...,%n,01,...,0p)

e Parameters: © = {Tyo,ﬁ,al,...,aK,(r?’,,rrg,rrf}
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K
i _ =t _ 0., +b; .
o= (Foe ™y + ) & Bt g g

e Latent vector: z = (31,...,%n,01,...,0p)

e Parameters: © = {Tyo,ﬁ,al,...,aK,(r?’,,rri,frf}

e Stochastic Approximation Expectation Maximization (SAEM) algorithm
- S-Step (Simulation):
Zy ~ p(z | X, O (1))
- SA-Step (Stochastic Approximation):

Q) (©) = Qk—1)(©) + Y(k) (log p(x, z(i) | ©) — Qk—1)(©))

where () is a decreasing step-size sequence satisfying >, y(x) = +oco and >, 'y(zk) < Ho0.
- M-Step (Maximization):
O = argmax Qx)(®)
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First test on synthetic data
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Figure: Boxplots of the estimated model parameters over 1000
Monte Carlo runs. The dashed red line indicates the true
parameter value used to generate the synthetic data.
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First test on real data: Mexico City

Figure: Prediction of the phase difference at date 10
using the SAEM approach.

— promising results

42



Conclusions
[e]e]e]e]e]

Thank you for your attention !l
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