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SAR image

Single Look Complex (SLC) is characterized by a complex signal z = a · e jθ

• Amplitude (a): strength of the backscattering
• Phase (θ): geometric information, random information θ = θrandom + θgeometric

(a) amplitude (b) phase

Figure: Sentinel-1 SAR image over Mexico City
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Interferogram

2 coregistered SLC images of the same scene at different times → interferogram

I =

∑
i,j∈Ω z1(i , j)z∗2 (i , j)√∑

i,j∈Ω z1(i , j)z∗1 (i , j)
∑

i,j∈Ω z2(i , j)z∗2 (i , j)
= γe j∆θ

where
• Ω is the spatial neighborhood of the pixel (i , j)
• γ is coherence (∈ [0, 1]), representing the similarity between the two images
• ∆θ represents the phase difference (∆θ = θ1 − θ2, θ ∈ [−π, π])

(a) coherence (b) phase difference

Figure: Interferogram over Mexico City
© Dana El Hajjar 4
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Interferometric phase
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Multi-temporal InSAR

Interferogram of 2 SLC images
• Decorrelation noise

• Atmospheric disturbances

• Measurement accuracy (centimetric)

Multi-temporal interferograms
• Building interferometric networks from a time series of SAR

images

• Continuous monitoring of Earth deformations

• Improvement in measurement accuracy (millimetric)

© Dana El Hajjar 6
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Data model: covariance matrix structure
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Figure: Representation of SAR time series using a
sliding window of size n pixels [6]

Consider a multivariate random vector x = [x1, . . . , xp ]T

For all (l , k) ∈ {1, . . . , p}2,

xl = ale
jθl , xk = ake

jθk

The second-order moment

E[xl (xk )∗] = γk,lσkσl exp(j(θl − θk ))

−→ covariance matrix

E[xxH ] ≜ Σ = Ψ ◦ (wθwH
θ )

where

• γk,l : coherence coefficient between xk and xl
• σl : standard deviation of xl
• Σ: covariance matrix
• Ψ: coherence matrix
• wθ: vector of phase exponential

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".
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Data model: Gaussian distribution
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Figure: Representation of SAR time series using a
sliding window of size n pixels [6]

Consider a multivariate random vector

x = [x1, . . . , xp ]
T{

x i
}n
i=1 ∀i ∈ [1, n], a set i.i.d −→ x ∼ CN (0,Σ)

The log-likelihood is

L(x ;Σ) = − log

(
n∏

i=1

f (x i ,Σ)

)
∝ n log(|Σ|) + nTr(Σ−1S)

where S = 1
n

∑n
i=1 x ix iH

Covariance matrix: E[xxH ] ≜ Σ = Ψ ◦ (wθwH
θ )

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".
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Standard Phase Linking (PL)

Principle:
Estimate p − 1 phase differences from p SAR images −→ wθ

Assuming that Ψ is known, the method is equivalent to optimizing the following problem [1]:

minimize
wθ

wH
θ (Ψ

−1 ◦ S)wθ

subject to θ1 = 0

PROBLEM !!!
In reality, Ψ is unknown

• [1] proposed to use a plug-in: Ψmod = |S| −→ not optimal
• [8] proposed to estimate Ψ jointly with wθ

[1] A. Guarnieri et al. (2008) "On the exploitation of target statistics for SAR interferometry applications".
[8] P.V.H. Vu et al. (2022) "A new phase linking algorithm for multi-temporal InSAR based on the Maximum Likelihood Estimator".

© Dana El Hajjar 9
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Phase Linking based on Maximum Likelihood Estimation (MLE-PL)

→ The optimization problem [8]

minimize
Ψ,wθ

L(x i ;Σ(Ψ,wθ))

subject to θ1 = 0
wθ ∈ Tp

Ψ ∈ Sp

with Tp = {wθ ∈ Cp ||[wθ]i | = 1, ∀i ∈ [1, p]} and
Sp = {A ∈ Rp×p |A = AT }

2 unknowns to estimate −→ Block Coordinate Descent
Algorithm (BCD) + Majorization-Minimization (MM)

Bloc 2

Update wθ :
Minimize L with fixed Ψ
(Phase Linking)

niter
MM

Bloc 1

Update Ψ :
Minimize L with fixed wθ

niter
BCD

[8] P.V.H. Vu et al. (2022) "A new phase linking algorithm for multi-temporal InSAR based on the Maximum Likelihood Estimator".

© Dana El Hajjar 10
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Towards a Robust Model: Scaled Gaussian distribution

Figure: Empirical distribution of the real part of Sentinel-1 SLC
samples taken from a 50 × 50 window on the image acquired
on July 3, 2019 [6]

Consider that the set {x i}ni=1 is i.i.d and follows a Scaled
Gaussian distribution x i ∼ CN (0, τiΣ)

f (x i ) =
1

πn det(τiΣ)
exp

(
−x iH(τiΣ)−1x i

)
The log-likelihood is

L(x ;Σ, {τi}ni=1) = n log |Σ|+ nTr{Σ−1S}

+
n∑

i=1

p log τi + const

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".

© Dana El Hajjar 11



InSAR PL Research questions Contributions Conclusions

Robust Phase Linking (MLE-PL)

→ The optimization problem [6]

minimize
Ψ,wθ ,{τi}ni=1

L(x i ;Σ(Ψ,wθ))

subject to θ1 = 0
wθ ∈ Tp

Ψ ∈ Sp

with Tp = {wθ ∈ Cp ||[w̃θ]i | = 1,∀i ∈ [1, p]} and
Sp = {A ∈ Rp×p |A = AT }

3 unknowns to estimate −→ Block Coordinate Descent
Algorithm (BCD) + Majorization-Minimization (MM)

Bloc 1
Update {τi}n

i=1 :
Minimize L with fixed wθ and Ψ

Bloc 2
Update Ψ :
Minimize L with fixed wθ and {τi}n

i=1

Bloc 3
Update wθ :
Minimize L with fixed Ψ and {τi}n

i=1
(Phase Linking) niter

MM

niter
BCD

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".
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Covariance Fitting Interferometric Phase Linking (COFI-PL)

MLE-PL [6]

minimize
Ψ,wθ ,{τi}ni=1

L(x i ;Σ(Ψ,wθ))

subject to θ1 = 0
wθ ∈ Tp

Ψ ∈ Sp

Motivations to COFI-PL:
• phase ambiguity

• reduction of computational cost

COFI-PL involves refining the structure of the covariance matrix estimator by minimizing a projection criterion [7].

minimize
wθ

f dΣ (Σ,Ψ ◦ wθwH
θ )

subject to θ1 = 0
wθ ∈ Tp

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".
[7] P.V.H. Vu et al. (2024) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
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One or several images are on the way . . .
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∀i = 1, . . . , n

x̃i =


x i1
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...
x ip


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At each new SAR acquisition

• Re-Estimation of the increasing
covariance matrix

• Re-Estimation of the phases

−→ Huge computation time
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Sequential Estimator (SE)

mini-
stack 4

mini-
stack 1

mini-
stack 2

mini-
stack 3

mini-
stack 4

Phase Linking: Estimate relative
phases in each mini-stack.

Mini-stack Division: Split the time
series into small temporal blocks.

Data compression: Reduce data
to one virtual image per block.

Datum connection: Link all mini-
stacks and correct phase bias by
a PL on all compressed versions.

significant time to assemble
meaningful mini-stacks

lack of robustness against various
forms of temporal decorrelation

based on Gaussian assumptions
for SAR imagery

[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InSAR time series analysis".
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Research questions

RECAP

robustness sequential

MLE-PL [6] ✓ ✗

COFI-PL [7] ✓ ✗

SE [4] ✗ ✓

How can we develop a sequential method that is more cost-effective than traditional offline approaches while
ensuring:

• The statistical relationship between historical images and new images remains optimal.

• The integration and regularization tools for incorporating new image blocks are maintained.

• The cost of storage is minimized.

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".
[7] P.V.H. Vu et al. (2024) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InSAR time series analysis".
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Data model S-MLE-PL

tp+1

tp

t0

Te
mpo

ra
l a

xis

Newly
acquired
data
{x il }

n
i=1

Historical
data
{x i}ni=1

Spatial

Sp
at

ia
l

Spatial

Sp
at

ia
l

Figure: Representation of SAR time series with a sliding
window containing n pixels x̃ i .

We consider a set {x̃ i}ni=1 where

x̃ i = [x i1, . . . , x
i
p︸ ︷︷ ︸

x i

, x il ]
T ∈ Cl=p+1

The set
{
x̃ i
}n

i=1
, ∀i ∈ [1, n], is i.i.d., such that

x̃ i ∼ CN (0, τi Σ̃).

The covariance matrix can be rewritten as

Σ̃ =

(
Σ w∗

θl
diag(wθ)γ

T

γ diag(wθ)
Hwθl γl

)

© Dana El Hajjar 17
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MLE problem

MLE-PL (offline)

minimize
Ψ̃,w̃θ ,{τi}ni=1

L(x̃ i ; Ψ̃, w̃θ , {τi}ni=1)

subject to θ1 = 0, w̃θ ∈ Tl , Ψ̃ ∈ Sl

wθl
is estimated with :

- estimated past
• ŵθ

• Σ̂

- new data

statistics of
the conditional
distribution of
new image with
respect to the past

S-MLE-PL (sequential)

minimize
γ,γl ,wθl

,{τi}ni=1
L(x̃ i ;γ, γl ,wθl , {τi}

n
i=1)

subject to θ1 = 0, |wθl
| = 1,γ, γl real

L(x̃ i ;γ, γl ,wθl
, {τi}n

i=1)

= −
n∑

i=1
Li (x i

l |x
i ;γ, γl ,wθl

, {τi}n
i=1)

+ Li (x i ; {τi}n
i=1)

According to [2], x i
l |x

i ∼ CN (µi
x , σ

2
x ) where

• µi
x = wθl

γdiag(ŵθ)
H Σ̂−1x i

• σ2
x = γl − γdiag(ŵθ)

H Σ̂−1diag(ŵH
θ )γ

T

[2] T.W. Anderson (1962) "An introduction to multivariate statistical analysis".

© Dana El Hajjar 18
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• ŵθ

• Σ̂

- new data

statistics of
the conditional
distribution of
new image with
respect to the past

S-MLE-PL (sequential)

minimize
γ,γl ,wθl

,{τi}ni=1
L(x̃ i ;γ, γl ,wθl , {τi}

n
i=1)

subject to θ1 = 0, |wθl
| = 1,γ, γl real

L(x̃ i ;γ, γl ,wθl
, {τi}n

i=1)

= −
n∑

i=1
Li (x i

l |x
i ;γ, γl ,wθl

, {τi}n
i=1)

+ Li (x i ; {τi}n
i=1)

According to [2], x i
l |x

i ∼ CN (µi
x , σ

2
x ) where

• µi
x = wθl

γdiag(ŵθ)
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MLE problem

minimize
Ψ̃,w̃θ ,{τi}ni=1

L(x̃ i ; Ψ̃, w̃θ , {τi}ni=1)

subject to θ1 = 0, w̃θ ∈ Tl , Ψ̃ ∈ Sl

Bloc 1
Update {τ i}ni=1:
Minimize L with fixed w̃θ and Ψ̃

Update Ψ̃:
Minimize L with fixed ~wθ and {τi}ni=1

Bloc 2

Update ~wθ :

Minimize L with fixed Ψ̃ and {τi}ni=1

Bloc 3

niter
BCD

niter
MM

complexity: O(l3)

minimize
γ,γl ,wθl

,{τi}ni=1
L(x̃ i ;γ, γl ,wθl , {τi}

n
i=1)

subject to θ1 = 0, |wθl
| = 1,γ, γl real

Update wθl
:

Minimize L with fixed γ0, γ and {τi}ni=1

Bloc 4

Update γ0:
Minimize L with fixed γ, wθl

and {τi}ni=1

Bloc 3

Update γ:
Minimize L with fixed γ0, wθl

and {τi}ni=1

Bloc 2

niter
BCD

Bloc 1
Update {τ i}ni=1:
Minimize L with fixed γ and γ0 and wθl

complexity: O(p2) with l > p
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Minimize L with fixed Ψ̃ and {τi}ni=1

Bloc 3

niter
BCD

niter
MM

complexity: O(l3)

minimize
γ,γl ,wθl

,{τi}ni=1
L(x̃ i ;γ, γl ,wθl , {τi}

n
i=1)

subject to θ1 = 0, |wθl
| = 1,γ, γl real

Update wθl
:

Minimize L with fixed γ0, γ and {τi}ni=1

Bloc 4

Update γ0:
Minimize L with fixed γ, wθl

and {τi}ni=1

Bloc 3

Update γ:
Minimize L with fixed γ0, wθl

and {τi}ni=1

Bloc 2

niter
BCD

Bloc 1
Update {τ i}ni=1:
Minimize L with fixed γ and γ0 and wθl

complexity: O(p2) with l > p
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Study Area: Mexico City

Figure: Mexico City (source : Google Earth)

Study area context
• One of the most densely populated urban areas> 20M

• Population grew from 3 M (1950) to 22.7 M (2025)

• Rapid urbanization ⇒ groundwater extraction ⇒ land subsidence

Figure: Evolution of Mexico City’s population (source : World Population Reviews)
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Dataset

General Information:
• Sensor: Sentinel-1 (C-band)

• Acquisition mode: Interferometric Wide Swath (IW)

• Orbit direction: Descending

• Polarization: VV

• Path / Frame: 143 / 526

Temporal Coverage:
• Number of images: 40

• Time span: August 14, 2019 – December 6, 2020

• Total duration: 480 days (≈ 1.3 years)

• Temporal interval: 12 days

GPS Data:
• Stations: ICMX, UNVA, MMX1 (temporally and spatially

aligned with the SAR dataset)

• Measurements: 3D displacements (East, North, Up) Figure: Map of the available Global Positioning System (GPS)
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Results on Real Data: Mexico City

We evaluate the proposed method using a real dataset of Mexico City. The dataset consists of 20 satellite images
acquired between August 14, 2019 and April 10, 2020 with a spatial window of size 7 × 7 pixels.

Methods and input data:

• S-MLE-PL: uses p = 19 historical images and one new image.

• MLE-PL [6]: uses all l = 20 available images.

• SE [4]: uses a temporal sliding window of size s = 5 images.

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".
[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InSAR time series analysis".

© Dana El Hajjar 23



InSAR PL Research questions Contributions Conclusions

Results on real data: Mexico City

S-MLE-PL MLE-PL SE

Figure: Close-up view of the wrapped and the unwrapped interferograms (14 August 2019 - 10 April 2020) estimated by S-MLE-PL
(p + 1 = 20), MLE-PL [6] and SE [4] (s = 5) with a spatial window of size n = 7 × 7.
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Results on real data: Mexico City

RMSE (↓) SSIM (↑) Colinearity (↑) [3] computation time

MLE-PL [6] Ref Ref 0.61 38.4 min

S-MLE-PL 2.87 0.70 0.57 4.72 min

SE [4] 2.96 0.67 0.76 16.97 min

Table: Quantitative comparison between the S-MLE-PL, MLE-PL [6], and SE [4] approaches.

[6] P.V.H. Vu et al. (2023) "Robust Phase Linking in InSAR".
[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InSAR time series analysis".
[3] B. Pinel-Puysségur et al. (2012) "Multi-link InSAR timeseries: Enhancement of a wrapped interferometric database".
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Data Model
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Figure: Representation of a SAR time series using a
sliding window of n pixels x̃i .

Limitations:
• S-MLE-PL adds one image at a time, limiting multi-image

information.

• S-MLE-PL does not allow the direct use of regularization
techniques.

=⇒ We introduce S-COFI-PL approach

We consider a set {x̃i}ni=1, where

x̃i = [x i1, . . . , x
i
p︸ ︷︷ ︸

xi

, x ip+1, . . . , x
i
p+k︸ ︷︷ ︸

xi

]T ∈ Cp+k

Each pixel is assumed i.i.d. and follows a zero-mean CCG
distribution: x̃ ∼ CN (0, Σ̃).

Σ̃ =

(
Σp (Σpn)H

Σpn Σn

)
w̃θ =

(
wθ

wθ

)
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Problem reformulation

minimize
wθ

f d
Σ̃

(Σ̃, Ψ̃ ◦ w̃θw̃H
θ )

subject to θ1 = 0

wθ ∈ Tk

Covariance matrix plug-in
• SCM: Σ̃U = 1

n

∑n
i=1 x̃i x̃iH

• PO: Σ̃U = 1
n

∑n
i=1 ỹi ỹiH where ỹ = ΦT(x̃) and Φ : γe jθ −→ e jθ

• . . .

+ Regularization

• Shrinkage to identity: Σ̃SK = βΣ̃U + (1 − β) tr(Σ̃U )
p+k

Ip+k

• Tapering: Σ̃BW = W(b) ◦ Σ̃U with [W(b)]ij =

{
1 if |i − j| ≤ b

0 otherwise

• . . .

Matrix distances
• Kullback-Leibler (KL) divergence:

f KL
Σ̃

(w̃θ) = w̃H
θ (Ψ̃

−1 ◦ Σ̃)w̃θ

• Frobenius norm (FN):

f FN
Σ̃

(w̃θ) = −2w̃H
θ (Ψ̃ ◦ Σ̃)w̃θ

• . . .
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i=1 ỹi ỹiH where ỹ = ΦT(x̃) and Φ : γe jθ −→ e jθ

• . . .

+ Regularization

• Shrinkage to identity: Σ̃SK = βΣ̃U + (1 − β) tr(Σ̃U )
p+k

Ip+k

• Tapering: Σ̃BW = W(b) ◦ Σ̃U with [W(b)]ij =

{
1 if |i − j| ≤ b

0 otherwise

• . . .

Matrix distances
• Kullback-Leibler (KL) divergence:

f KL
Σ̃

(w̃θ) = w̃H
θ (Ψ̃

−1 ◦ Σ̃)w̃θ

• Frobenius norm (FN):

f FN
Σ̃

(w̃θ) = −2w̃H
θ (Ψ̃ ◦ Σ̃)w̃θ

• . . .

© Dana El Hajjar 27



InSAR PL Research questions Contributions Conclusions

Optimization problem resolution - MM algorithm (1/2)

S-COFI-PL optimization problem

−→ no analytical solution

−→ iterative algorithm

S-COFI-PL

minimize
wθ

f d
Σ̃

(
Σ̃, Ψ̃ ◦ w̃θw̃H

θ

)
subject to wθ ∈ Tk ,

θ1 = 0

minimize
x∈X

f (x)

Majorization-Minimization (MM) algorithm [10]:

• step 1: majorizing the cost function by a g(.|xt):
f (x) ≤ g(x |xt)

• step 2: minimizing the obtained function g(x |xt)

[10] Y. Sun et al. (2016) "Majorization-Minimization algorithms in signal processing, communications, and Machine Learning".
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Optimization problem resolution - MM algorithm (2/2)

step1:

Lemma The concave quadratic form f : w −→ −wHHw is majorized by −Re(wHHw(t)) with equality at point w(t).

f FN
Σ̃

(w̃θ) = −2wH
θ (|Σp | ◦ Σp)wθ − 2wH

θ (|Σpn|)T ◦ (Σpn)
H)wθ − 2wθ

H(|Σpn| ◦ Σpn)wθ − 2wθ
H(|Σn| ◦ Σn)wθ

is majorized by the following expression

g(wθ |w
(t)
θ ) = −Re

(
wθ

H · 4
[
(|Σpn| ◦ Σpn)wθ + (|Σn| ◦ Σn)w

(t)
θ

])

step 2:

Lemma The solution of the minimization problem minw∈Tk
−Re(wH w̆ (t)) is obtained as w∗ = ΦT(w̆ (t)) with

ΦT : x = re iθ −→ e iθ

The problem is equivalent to min
wθ∈Tk

− Re
(

wθ
H · 4

[
(|Σpn| ◦ Σpn)wθ + (|Σn| ◦ Σn)w

(t)
θ

]︸ ︷︷ ︸
w̆ (t)

θ

)

and the solution is obtained as w (t+1)
θ = ΦT(w̆

(t)
θ )
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Results on Real Data: Mexico City

We evaluate the proposed method using a real dataset of Mexico City. The dataset consists of 40 satellite images
acquired between August 14, 2019 and December 6, 2020 with a spatial window of size 7 × 7 pixels.

Methods and input data:

• S-COFI-PL: uses p = 35 historical images and k = 5 new images.

• COFI-PL [7]: uses all l = 40 available images.

• SE [4]: uses a temporal sliding window of size s = 5 images.

[7] P.V.H. Vu et al. (2025) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InSAR time series analysis".
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Results on real data: Mexico City

S-COFI-PL KL SK-PO COFI-PL KL SK-PO SE

Figure: Close-up view of the wrapped and the unwrapped interferogram (14 August 2019 - 6 December 2020) estimated by S-COFI-PL
and COFI-PL [7] using KL divergence and SK-PO and by SE [4].
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Results on real data: Mexico City

S-COFI-PL FN BW-PO COFI-PL FN BW-PO SE

Figure: Close-up view of the wrapped and the unwrapped interferogram (14 August 2019 - 6 December 2020) estimated,by S-COFI-PL
and COFI-PL [7] using FN and BW-PO, and by SE [4].
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Results on real data: Mexico City

RMSE
(↓)

SSIM
(↑)

Colinearity [3]
(↑)

computation
time

KL
SK-PO

S-COFI-PL 7.54 0.62 0.64 0.44h
COFI-PL [7] 7.73 0.55 0.60 0.52h

FN
BW-PO

S-COFI-PL 2.07 0.89 0.89 0.37h
COFI-PL [7] Ref Ref 0.89 0.43h

SE [4] 7.47 0.24 0.72 0.5h

Table: Comparison of COFI-PL [7] and S-COFI-PL and SE [4].

Recap KL : Kullback-Leibler divergence FN : Frobenius Norm

BW : banding SK : Shrinkage-to-identity

PO : Phase-Only

[7] P.V.H. Vu et al. (2025) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InSAR time series analysis".
[3] B. Pinel-Puysségur et al. (2012) "Multi-link InSAR timeseries: Enhancement of a wrapped interferometric database".
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Data model

k

ℓ

p

Σ̂(1)
Σ̂(2)covariance

matrix
plug-in
for j=1

covariance
matrix
plug-in
for j=2

ŵ(1)
ŵ(2)

ŵ(3)

...

covariance matrix
of the entire time series

Limitations:
• S-MLE-PL and S-COFI-PL require storing and

processing all historical images.

• This increases memory and computation
requirements.

=⇒ We introduce Sl-IPL approach

• p: size of the temporal window

• k: size of the stride or the new
added images

• ℓ = p − k: size of the overlap
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Optimization problem

COFI-PL (offline)
minimize

w̃θ

f FN
Σ̃

(Σ̃, Ψ̃ ◦ w̃θw̃θ
H)

subject to θ1 = 0
w̃θ ∈ Tl

Sl-IPL (sequential)

minimize
w(j)

f FN
Σ̂(j)

(Σ(j),Ψ(j) ◦ w(j)w(j)
H)

+λh(w(j))
subject to w(j) ∈ Tp

h(w(j)) =

∥∥∥∥(wℓ(j−1)
0

)
− w(j)

∥∥∥∥2

Algorithm MM algorithm for Sl-IPL

Input: Σ̂(j) ∈ Cp×p

Compute : M = 4(|Σ̂(j)| ◦ Σ̂(j))
repeat

ẅ(t)

(j)
= Mw(j) + 2λ

(
wℓ(j−1)

0

)
w(t)

(j)
= ΦT{ẅ(t)

(j)
}

t = t + 1
until convergence
Output: ŵ(j) = wend ∈ Tp

method complexity

Sl-IPL O(p2)
COFI-PL [7] O(l2)

with l > p.

[7] P.V.H. Vu et al. (2025) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
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(j)
}

t = t + 1
until convergence
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Results on Real Data: Mexico City

We evaluate the proposed method using a real dataset of Mexico City. The dataset consists of 30 satellite images
acquired between August 14, 2019 and July 16, 2020 with a spatial window of size 7 × 7 pixels.

Methods and input data:

• Sl-IPL: uses p = 5, ℓ = 4, and k = 1.

• COFI-PL [7]: uses all l = 30 available images.

• SE [4]: uses a temporal sliding window of size s = 5 images.

[7] P.V.H. Vu et al. (2025) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InSAR time series analysis".
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Sl-IPL COFI-PL FN BW-PO SE

Figure: Close-up view of the wrapped and the unwrapped interferogram estimated by Sl-IPL, COFI-PL [7] and SE [4].
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Results on real data: Mexico City

method colinearity [3] (↑) SSIM (↑) time

COFI-PL [7] 0.91 Ref 19.35 min

Sl-IPL 0.90 0.94 3.9 min

SE [4] 0.84 0.85 17.1 min

Table: Quantitative values for the evaluation of the estimated phases of Sl-IPL, the SE [4] and COFI-PL [7].

[3] B. Pinel-Puysségur et al. (2012) "Multi-link InSAR time series: Enhancement of a wrapped interferometric database".
[4] H. Ansari et al. (2017) "Sequential Estimator: Toward efficient InSAR time series analysis".
[7] P.V.H. Vu et al. (2025) "Covariance Fitting Interferometric Phase Linking: Modular Framework and Optimization Algorithms".
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Perspectives (1/3)

Temporal monitoring of SAR image evolution (collab. with Mohammed Cherifi (Algeria))

Classic model:

x itj = γ i
tj
e
jθtj + ϵitj

✗ no temporal dynamics

✗ prediction and/or interpolation is not
possible

Proposed model:

x i
tj

=
(

γ0 e−α tj + γ̃i

)

e
j θtj + ϵ itj

Mixed effects model
on the coherence
describing the temporal
evolution

Auto-regressif mode (AR)
model on the phase

θtj =
∑K

k=1 ak θtj−k + bj

✓ temporal dynamics

✓ prediction and/or interpolation is
possible
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x itj =
(

γ0 e−α tj + γ̃i

)
e
j (

∑K
k=1 akθtj−k

+bj ) + ϵitj

• Latent vector: z = (γ̃1, . . . , γ̃n, θ1, . . . , θp)

• Parameters: Θ = {γ0, α, a1, . . . , aK , σ
2
γ , σ

2
b , σ

2
ϵ}

• Stochastic Approximation Expectation Maximization (SAEM) algorithm
- S-Step (Simulation):

z(k) ∼ p(z | x ,Θ(k−1))

- SA-Step (Stochastic Approximation):

Q(k)(Θ) = Q(k−1)(Θ) + γ(k)
(
log p(x , z(k) | Θ)− Q(k−1)(Θ)

)
where γ(k) is a decreasing step-size sequence satisfying

∑
k γ(k) = +∞ and

∑
k γ

2
(k)

< +∞.
- M-Step (Maximization):

Θ(k) = argmax
Θ

Q(k)(Θ)
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First test on synthetic data

Figure: Boxplots of the estimated model parameters over 1000
Monte Carlo runs. The dashed red line indicates the true
parameter value used to generate the synthetic data.

First test on real data: Mexico City

Figure: Prediction of the phase difference at date 10
using the SAEM approach.

−→ promising results
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Thank you for your attention !!
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